
www.manaraa.com

Scholars' Mine Scholars' Mine 

Masters Theses Student Theses and Dissertations 

Fall 2010 

Content based image retrieval for bio-medical images Content based image retrieval for bio-medical images 

Vikas Nahar 

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses 

 Part of the Computer Sciences Commons 

Department: Department: 

Recommended Citation Recommended Citation 
Nahar, Vikas, "Content based image retrieval for bio-medical images" (2010). Masters Theses. 6856. 
https://scholarsmine.mst.edu/masters_theses/6856 

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This 
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the 
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu. 

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F6856&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F6856&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/6856?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F6856&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu


www.manaraa.com

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

 

 

 

 

 

 

 

 

CONTENT BASED IMAGE RETRIEVAL 

FOR BIO-MEDICAL IMAGES 

 

by 

 

 

VIKAS NAHAR 

 

 

A THESIS 

 

 

Presented to the Faculty of the Graduate School of the 

 

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY 

 

In Partial Fulfillment of the Requirements for the Degree 

 

 

MASTER OF SCIENCE IN COMPUTER SCIENCE 

 

 

 

2010 

 

Approved by 

 

 

Fikret Ercal, Advisor 

R. Joe Stanley, Co-advisor 

Ralph Wilkerson 

 

 

 

 

 

 



www.manaraa.com

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2010 

Vikas Nahar 

All Rights Reserved 



www.manaraa.com

  iii 

ABSTRACT 

Content Based Image Retrieval System (CBIR) is used to retrieve images similar 

to the query image. These systems have a wide range of applications in various fields. 

Medical subject headings, key words, and bibliographic references can be augmented 

with the images present within the articles to help clinicians to potentially improve the 

relevance of articles found in the querying process.  In this research, image feature 

analysis and classification techniques are explored to differentiate images found in 

biomedical articles which have been categorized based on modality and utility. Examples 

of features examined in this research include:  features based on different histograms of 

the image, texture features, fractal dimensions etc. Classification algorithms used for 

categorization were  

1) Mean shift clustering  

 2) Radial basis clustering 

Different combinations of features were selected for classification purposes and it 

was observed that features incorporating soft decision based HSV histogram features give 

the best results. A library of features was then developed which can be used in 

RapidMiner. Experimental results for various combinations of features have also been 

included.  

 

 

 

 



www.manaraa.com

  iv 

ACKNOWLEDGMENTS 

First and foremost, I would like to thank my co advisor, Dr. R. Joe Stanley, for 

providing me with an opportunity to work under him. I am extremely grateful to him for 

his excellent guidance, technical help, motivation and continued patience throughout this 

research, and the course of my graduate program and during the writing of this thesis. I 

would also like to express my gratitude towards Dr. Fikret Ercal and Dr. R. Wilkerson for 

the valuable suggestions, discussions and comments. I would also like to thank Dr. 

Shamik Sural for helping me in my research. 

Dr. Kapil Gupta, Soumya De and Mohammad Das of the “ECE 212 Lab” have 

played a significant role in my research work and I would like to thank each one of them 

for the same.  

Special thanks to my parents and brother for their love and understanding all these 

years and during the course of my graduate studies. Their support and faith in me, has 

always encouraged me and helped me come out stronger from all the hard times so far. 

Last but not the least; I would like to thank my friends Pavitra and Abhinav who have 

provided valuable insight into certain areas of my research.  

 

 

 

 

 

 



www.manaraa.com

  v 

TABLE OF CONTENTS 

 

Page 

 

ABSTRACT ....................................................................................................................... iii 

ACKNOWLEDGMENTS ................................................................................................. iv 

LIST OF ILLUSTRATIONS ........................................................................................... viii 

LIST OF TABLES ............................................................................................................. xi 

SECTION 

 

1. INTRODUCTION .............................................................................................. 1 

1.1 CONTENT BASED IMAGE RETRIEVAL ................................................ 1 

1.2 CBIR IN BIOMEDICINE ............................................................................ 2 

1.3 RESEARCH OBJECTIVE ........................................................................... 2 

1.4 DATA SET ................................................................................................... 3 

1.5 TOOLS AND SOFTWARE ......................................................................... 4 

1.6 OUTLINE OF THESIS ................................................................................ 5 

2. LITERATURE REVIEW ................................................................................... 6 

3. IMAGE FEATURES ........................................................................................ 10 

3.1 IMAGE PREPROCESSING ...................................................................... 10 

3.2 GLOBAL FEATURES............................................................................... 10 

3.3 HISTOGRAM BASED FEATURES ......................................................... 12 

3.3.1 LUV Color Space .............................................................................. 12 

3.3.2 Luminance Histogram. ...................................................................... 13 

3.3.3 HSV Color Space. ............................................................................. 13 

3.3.3.1 Histogram generation and window based smoothing ............ 14 



www.manaraa.com

  vi 

3.3.3.2 Features. ................................................................................ 16 

3.4 WDD FEATURES ..................................................................................... 16 

3.5 TEXTURE FEATURES ............................................................................. 18 

3.6 CLASSIFICATION ALGORITHMS ........................................................ 19 

4. IMPLEMENTATION DETAILS ..................................................................... 22 

4.1 HISTOGRAM CLASS ............................................................................... 22 

4.2 EXTENDING RAPIDMINER ................................................................... 27 

4.2.1. Operator Class Details ...................................................................... 28 

4.2.2. ResultObject Class Details. .............................................................. 31 

4.2.3. Operators.xml in Detail. ................................................................... 36 

4.3. PACKAGING INTO JAR FILES FOR RAPIDMINER .......................... 37 

4.4 USING OPERATORS IN RAPIDMINER ................................................ 38 

4.5. ISSUES DURING CODING ..................................................................... 47 

4.5.1. Matlab Data Types Vs Java Data Types. ......................................... 48 

4.5.2 Array Index. ....................................................................................... 48 

4.5.3. Matlab Inbuilt Functions. ................................................................. 49 

4.5.4. Design Issues. ................................................................................... 49 

5. EXPERIMENTS AND RESULTS ................................................................... 51 

5.1 GROUPS OF FEATURES ......................................................................... 51 

5.2. EXPERIMENTS PERFORMED .............................................................. 52 

5.3. COMBINATION OF FEATURES AND EXPERIMENTS ..................... 58 

6.  EXTRACTING CHARACTERS FROM IMAGES ........................................ 63 

6.1 OVERVIEW ............................................................................................... 63 



www.manaraa.com

  vii 

6.2 OCR FOR ALL IMAGES .......................................................................... 63 

6.3 OCR FOR RADIOLOGY IMAGES .......................................................... 70 

6.4  TESSERACT-OCR ANALYSIS............................................................... 79 

7. CONCLUSIONS AND FUTURE DIRECTIONS ........................................... 80 

7.1 CONCLUSIONS ........................................................................................ 80 

7.2 FUTURE DIRECTIONS ............................................................................ 80 

BIBLIOGRAPHY ............................................................................................................. 82 

VITA ................................................................................................................................. 84 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

  viii 

LIST OF ILLUSTRATIONS 

                                                                                                                             Page 

 

Figure 3.1. WDD functions [10] used for computing basis function features .................. 17 

Figure 4.1.   Class diagram for Histogram class ............................................................... 23 

Figure 4.2.   Body of the constructor for the class ............................................................ 28 

Figure 4.3.   Body of getInputClasses ............................................................................... 29 

Figure 4.4.   Body of the method getOutputClasses ......................................................... 29 

Figure 4.5.   Body of the method getParameterTypes ...................................................... 30 

Figure 4.6.   Body of apply() method................................................................................ 31 

Figure 4.7.   Two parameter constructor for the class LMostFrequentResult .................. 32 

Figure 4.8.   Body of method getMostFrequentLevel ....................................................... 32 

Figure 4.9.   Body of the method getName ....................................................................... 33 

Figure 4.10. Body of the method getVisualizationComponent ........................................ 33 

Figure 4.11. Body of the method toResultString .............................................................. 34 

Figure 4.12. Body of method isSavable ............................................................................ 34 

Figure 4.13. Body of the method save .............................................................................. 35 

Figure 4.14. operators.xml ................................................................................................ 36 

Figure 4.15. build.xml file ................................................................................................ 39 

Figure 4.16. RapidMiner home screen .............................................................................. 40 

Figure 4.17. RapidMiner screen on starting a new process .............................................. 41 

Figure 4.18. Screen while loading an operator ................................................................. 42 

Figure 4.19. RapidMiner screen after loading the operator .............................................. 43 

Figure 4.20. Errors during the validation process ............................................................. 44 



www.manaraa.com

  ix 

Figure 4.21. Console output for a validated process ......................................................... 45 

Figure 4.22. Screen when the process starts ..................................................................... 46 

Figure 4.23. Screen after the process has finished ............................................................ 47 

Figure 6.1.   Image from modality “Photograph” ............................................................. 64 

Figure 6.2.   Snapshot of characters extracted from the image ......................................... 65 

Figure 6.3.   Image from modality “Radiology” ............................................................... 65 

Figure 6.4.   Snapshot of characters extracted from the image ......................................... 66 

Figure 6.5.   Image from modality “Chart/Graph” ............................................................ 66 

Figure 6.6.   Snapshot of characters extracted from the image ......................................... 67 

Figure 6.7.   Image from modality “Chart/Graph” ............................................................ 67 

Figure 6.8.   Snapshot of characters extracted from the image ......................................... 68 

Figure 6.9.   Image from modality “Photograph” ............................................................. 68 

Figure 6.10. Snapshot of characters extracted from the image ......................................... 69 

Figure 6.11. Image from modality “Chart/Graph” ............................................................ 69 

Figure 6.12. Characters extracted from the image ............................................................ 70 

Figure 6.13. Radiology image ........................................................................................... 71 

Figure 6.14. Output of the processed radiology image in Figure 6.13 ............................. 72 

Figure 6.15. Radiology image example for finding text characters .................................. 73 

Figure 6.16. Wiener filtered image (step 3) ...................................................................... 73 

Figure 6.17. Image with no outlines (step 20) .................................................................. 76 

Figure 6.18. Dark text blocks removed (step 21).............................................................. 76 

Figure 6.19. Final image with only text (step 22) ............................................................. 77 

Figure 6.20. Binary image used as input for OCR ............................................................ 78 



www.manaraa.com

  x 

Figure 6.21. Characters extracted from Figure 6.20 ......................................................... 79 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

  xi 

LIST OF TABLES 

               Page 

 

Table 1.1.    Categories for image modality ........................................................................ 3 

Table 1.2.    Number of images from each category for image modality case ................... 3 

Table 5.1.    Test results using radial clustering method for δ = 0.5 for feature groups 

                    1-3 for 25 training/test sets are presented with mean and standard 

                    deviation ........................................................................................................ 52 

 

Table 5.2.    Average number of cluster centers generated from radial clustering 

                    method for δ = 0.5 over 25 randomly generated training/test sets ................ 53 

 

Table 5.3.    Summary average and standard deviation test results over 25 training/ 

                    test sets using radial clustering method for δ = 0, 0.5, 1.0, 5.0, 10.0, 

                    and 30.0 ......................................................................................................... 54 

 

Table 5.4.    Average confusion matrix test results for Group 1 for δ = 1.0 from radial 

                    clustering method .......................................................................................... 55 

 

Table 5.5.    Average confusion matrix test results for Group 2 for δ = 1.0 from radial 

                    clustering method .......................................................................................... 56 

 

Table 5.6.    Average confusion matrix test results for Group 3 for δ = 1.0 from radial 

                    clustering method .......................................................................................... 57 

 

Table 5.7.    Summary average and standard deviation test results over 25 training/ 

                    test sets using gradient density function clustering-based method α =  

                    0.25, 0.5, 1.0, 5.0........................................................................................... 58 

 

Table 5.8.    Percentage correct test results using radial clustering method classification 

                    for combinations 1-4 ..................................................................................... 60 

 

Table 5.9.    Percentage correct test results using radial clustering method classification  

                        for combinations 5-8 ..................................................................................... 61 
 

Table 5.10.  Percentage correct test results using radial clustering method classification 

                    for combinations 9-12 ................................................................................... 61 
 

 

 



www.manaraa.com

1 

 

1. INTRODUCTION 

 

 

1.1 CONTENT BASED IMAGE RETRIEVAL 

 

 CBIR systems retrieve images from that database which are similar to the query 

image. This is done by actually matching the content of the query image with the images 

in database. Content of an image can be described in terms of color, shape and texture of 

an image. Primarily research in Content Based Image Retrieval has always focused on 

systems utilizing color and texture features [1]. There has also been some work done 

using some local color and texture features. These account for Region Based Image 

Retrieval (RBIR) [2]. Apart from this, there has been wide utilization of color, shape and 

texture features for devising techniques to measure similarity amongst images, which can 

improve retrieval efficiency. This research focuses on combining texture features as well 

as features based on Luminance histogram, circular HSV histogram and fractal 

dimensions. The images in the database having similar content as that of the query image 

are the output of CBIR systems. CBIR systems have wide range of applications. Some of 

them are listed below: 

 Art Collection 

 Photograph Archives 

 Military Purposes 

  Crime Prevention 

Recently, CBIR systems have found their way into biomedical field. The following 

section overviews the usage of CBIR systems in biomedicine. 



www.manaraa.com

2 

 

1.2 CBIR IN BIOMEDICINE 

 

 Evidence Based practice (EBP) is a type of practice where the professionals seek 

evidence before making any professional decisions. The evidence could be sought by 

carefully examining the research done in the area or looking at similar situations in the 

past. EBP is often used by clinicians to access medical cases. Clinicians can use the 

information in biomedical publications to aid in assessing patient cases.  For searching a 

relevant article a clinician may use medical subject headings, key words or  bibliographic 

references in querying biomedical article databases such as Medline or Grateful Med. 

Image content in biomedical publications may also provide relevant information and 

potentially enhance the information and relevance of articles found in the querying 

process [3].   

 

1.3 RESEARCH OBJECTIVE 

 

 In this research, various techniques for Content Based Image Retrieval (CBIR) 

systems have been studied and a number of features for classifying images extracted from 

biomedical journal articles into categories based on modalities have been investigated. 

These features were combined into different groups and used for classification. 

Experiments were performed on various such groups for achieving best results. Libraries 

were formed based on different groups of features. These libraries can be used with open 

source data mining tool RapidMiner.  

 



www.manaraa.com

3 

 

1.4 DATA SET 

 

 In this research, the modality case was used for evaluating the feature groups and 

the different classification algorithms investigated.  For summary, Table 1.1 presents the 

nine categories for image modality.   Overall, the experimental data set consisted of 742 

images obtained from the Communications Engineering Branch of the National Library 

of Medicine.  Table 1.2 contains the distribution of the images in from different 

categories of image modalities given in Table 1.1.  

 

 

 

Table 1.1.  Categories for image modality 

Category Definition 

Chart / Graph A geometric diagram consisting of dots, lines, and bars. 

Drawing A hand drawn illustration.  

Flowchart A symbolic representation of sequence of activities. 

Form A compilation of textual data and/or drawings related to patient 

and/or clinical process. 

Histology An image of cells and tissue on the microscopic level. 

Photograph Picture obtained from a camera. 

Radiology A 2D view of an internal organ or structure. 

Table Data arranged in a grid. 

Mixed Images combining modalities. 

 

 

 

 

 

Table 1.2.  Number of images from each category for image modality case  

Category Number of Images Used in Study 

Chart / Graph 108 

Drawing 68 

Flowchart 7 

Form 11 

Histology 134 

Photograph 252 



www.manaraa.com

4 

 

Table 1.2.  Number of images from each category for image modality case (cont.)  

Radiology 108 

Table 46 

Mixed 8 

 

 

 

 

 

 

1.5 TOOLS AND SOFTWARE 

 

 A part of this research involves developing libraries for software called 

RapidMiner. RapidMiner is an open source data mining tool. RapidMiner has a wide 

range of operators and nested operators which help in training the system for efficient 

mining. It also has an interactive GUI to setup the mining processes. RapidMiner scripts 

can also be written in xml. Some image mining operators have been developed, which 

help in calculating various image features and save them as text file which can again be 

used by classification algorithms to classify various images. 

 RapidMiner is built in Java and hence libraries that were developed have also 

been written in Java. The programming environment consisted of the following tools: 

 Eclipse IDE 

 Java Advanced Imaging Library (JAI) 

 Java Development Kit (JDK 5) 

 Java Runtime Environment (JRE 1.5)  

 Apache Ant  



www.manaraa.com

5 

 

Eclipse IDE is an open source project used to write, compile and build Java 

projects. Apache Ant is an open source build tool which helps building java projects. 

Eclipse comes with the built-in Ant compiler and builds the projects using build.xml file. 

Earlier build tools were OS dependent, but Ant is not OS dependent and this is the major 

advantage of using Ant to build projects. By using Ant to build projects, it can be ensured 

that projects can again be modified and built on any kind of platform.  

 

1.6 OUTLINE OF THESIS 

 

The remainder of the thesis is outlined as follows. Section 2 describes the 

literature review. Section 3 speaks about the features that were investigated as a part of 

the research and also about the classification algorithms that were used. Section 4 

describes the process of converting the code from Matlab implementation to Java version. 

It also describes how libraries are created for RapidMiner and how they can used in 

RapidMiner environment. In Section 5, various experiments and their results have been 

presented. The conclusions derived from the results are discussed in Section 6, along with 

future directions to improve the studied approaches. 

 

 

 

 

 

 



www.manaraa.com

6 

 

2. LITERATURE REVIEW 

 

Some preliminary background is presented for some of the different types of 

features found in the literature which provided the basis for the features and classification 

techniques investigated in this research.  The goal of image retrieval system is to retrieve 

all the images which are similar to the given query image. Some image retrieval systems 

use global color and texture features while some use local color and texture features. The 

later approach segments image into regions based on color and texture. These systems are 

called Region Based Image Retrieval (RBIR) systems and have proven to be more 

effective in terms of image retrieval.  

Color, shape and texture features of an image are widely used to measure 

similarity between images. These features are combined to achieve higher retrieval 

efficiency [1]. This paper [1] presents a method to combine all the three features within a 

multiresolution multigrid framework. First, the image is partitioned into non-overlapping 

tiles of equal size. Then color moments and the Gabor filter response of these tiles are 

used as local descriptors. This information is captured at two resolutions and two grid 

layouts which give different details of the same image. Gradient Vector Flow fields are 

used to calculate edge images which are used to gather information about shape of the 

image. Shape features are then recorded using invariant moments. A combination of Most 

Similar Highest Priority (MSHP) principle and the adjacency matrix of a bipartite graph 

formed using the tiles of query image and the target image is provided for image 

matching. The dataset consists of 1000 Corel images, 100 images each of the following 

10 categories: Africa, Beaches, Building, Bus, Dinosaur, Elephant, Flower, Horses, 



www.manaraa.com

7 

 

Mountain and Food. The experimental results of the proposed system are compared with 

the results from SIMPLIcity [3] and FIRM [4] image retrieval systems. 

A combination of texture features and grey level features has been explored for 

Content Based Image Retrieval Systems [5]. This paper [5] examines the hypothesis that 

two images are likely to have similar texture features. It also examines a new texture 

feature called “N x M gram” which is based on “N-gram” technique which is widely used 

to measure similarity between text. Three different methods are suggested for comparing 

the N x M- gram [5]: 

1)   Dot product of the N x M- gram vector. 

2)  Similarity can be improved by subtracting the average N x M –gram vector from                

the query image as well as image database. 

3)   The third method gauges similarity only in terms of the number of common N x 

M –grams.  

In addition to N x M –gram following grey level distribution features were also 

calculated [5]: 

1) Grey level features: in this method two different similarity measures have been 

used; first, histogram intersection is used to measure the similarity between the 

histogram of the images and the second method uses statistics on grey level 

distribution which includes; mean, standard deviation, RMS, skew and kurtosis. 

Euclidean is used as similarity measure for the statistical features.  

2) Local standard deviation: it is the standard deviation in the local window. 

Histogram intersection and Euclidean distance is used for similarity measure.  



www.manaraa.com

8 

 

3) Grey level co-occurrence: it is defined as “the measure of two-dimensional spatial 

dependency of the grey level for a fixed distance and/or angular spatial 

relationship” [5]. Weighted Euclidean distance is used as similarity measure.  

4) Laws texture feature: in this method first the image is first convolved with spatial 

filter and then the texture features are extracted and used to classify the images. 

Weighted Euclidean distance is used as a similarity measure.  

The method was tested on 200 images from the following 22 categories: 

fingerprints, floor plans, comics, music notes, tables, mug shots, houses, aircraft, animals, 

topological maps, road maps, satellite, aerial, Arabic, Chinese, English Print, English 

Lyrics, English Hand, Heb. script, Heb. hand, Heb. print1 and Heb. print2. N x M-gram 

and all other features of a query image are calculated and compared with the images in 

the database using the similarity measure mentioned along with each feature. Images in 

databases are then ranked with respect to the query image. Retrieval accuracy is 

evaluated using the normalized recall metric [6]. The N x M-grams work very well for 

simple images like music notes and documents but it gives poor results for rich images 

like aircraft and aerial views. 

A combination of color and texture features with different weights has been 

investigated for Content Based Retrieval Systems [7]. In [7], color features are generally 

extracted from the color histogram of the image. The color histogram is generated using 

the HSV representation of the image. The color histogram is soft decision based i.e. each 

pixel contributes weighted values of its hue and intensity based on its saturation. Thus, 

the histogram contains two components the “true color” and “gray color”. Texture 

features are extracted using Haar or Daubechies‟ wavelet. These two feature vectors are 



www.manaraa.com

9 

 

then normalized so that the bin value is always between [0, 1]. During the image retrieval 

process, the texture and color features of the query image is combined and weighted and 

compared with feature vectors of the images in the database using the Manhattan distance 

Metric. The retrieved results depend on the weight given to each of the feature vector. 

Experiments were performed on 50 random images from a database of 28168 images and 

results have shown that feature vector weight  
tW  (weight for texture feature) in the range 

of 
cW +-0.1 to 

cW +-0.2 (
cW  is weight for color feature) gives best results.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

10 

 

3.    IMAGE FEATURES 

 

3.1 IMAGE PREPROCESSING 

 

 In this research, numerous global measures and histogram-based, texture-based, 

and wavelet-based features have been investigated. The image data set consisted of 742 

images of various categories as described in Table 1.1. These images were in .gif and .jpg 

format. The feature values calculated were inconsistent for the same image using 

different file formats.  Since most of the images were .jpg format, all of the files were 

converted to this format to try and be as consistent as possible. All the images of the data 

set were converted to .jpg format using Paint Shop Pro. These .jpg images were then used 

for feature calculation. 

 

3.2 GLOBAL FEATURES 

 

 The following global image features were examined for distinguishing the images 

in the different categories found in Table 1.1:  1) the standard deviation of the standard 

deviation computed over the columns of the image.  Let stdColRed, stdColGreen, and 

stdColBlue denote these standard deviation features computed for the red, green, and blue 

planes, respectively, for a color image.  stdColRed, stdColGreen, and stdColBlue are the 

same values for grayscale images.  These features were examined to evaluate the change 

in contrast across the image.  2) The ratio of the pixels in the image in which the green 

value is less than the red value and the green value is less than the blue value, given as 

pixelsG, to the area or size of the image.  The ratio is denoted as shown in following 

expression. 



www.manaraa.com

11 

 

 
pixelsG

percentG
area

                                                 (1) 

This feature provides a basic measure of the greenness of the image.  3) The ratio of the 

pixels in the image with luminance value greater than or equal to 250, given as 

pixelsWhite, to the area/size of the image.  The ratio is denoted as shown in following 

expression. 

 

pixelsWhite
percentWhite

area
                                             (2) 

 

This feature gives a whiteness metric which is prevalent in images from several modality 

categories. 4) The square root of the area/size of the image, denoted as sqrtArea.  This 

feature was used to see if image area/size for the different categories was a distinguishing 

characteristic. 5) The ratio of the sum of the absolute differences between the red and 

green values and the red and blue values for each pixel in the image to the area/size of the 

image.  Let (R(i,j),G(i,j),B(i,j)) denote red, green, and blue values at pixel location (i,j), 

respectively.  The ratio is given as denoted in following expression. 

 

(i, j) (i, j) (i, j) (i, j)

(i,j) within the image

R G R B

sumDiff
area

  




                       (3) 

  

This feature provides a basic homogeneity measure. 6) the ratio of the pixels in the image 

with luminance value less than or equal to 30, given as pixelsDark, to the area/size of the 

image.  The ratio is denoted as shown below.   



www.manaraa.com

12 

 

 

pixelsDark
percentDark

area
                                                         (4) 

 

7) the ratio of the pixels in the image with luminance values between 50 and 150 

(inclusive), labeled as pixels50to150, to the area/size of the image.  The ratio is defined 

as shown in expression below:  

 

pixels50to150
percentMiddle

area
     (5) 

 

 The goal with this feature is to distinguish the images within particular categories as 

being bright (white), dark or moderate. 8) Estimates of the fractal dimension [8].   The 

first estimate of the fractal dimension is based on second order discrete derivatives 

computed column-wise over the image, given as fractDim1.  The second estimate is 

based on second order discrete derivatives computed column-wise over the image using 

symlets (sym5), labeled as fractDim2.  Fractal dimension was investigated here as a 

global image measure. 

 

3.3 HISTOGRAM BASED FEATURES 

 

3.3.1 LUV Color Space. Several descriptors computed from the L histogram of 

the image (from the LUV color space). 1) The first of the descriptors is the most 

frequently occurring L value in the image, denoted as mostFrequentGray.  If more than 

one value had the same (maximum) frequency of occurrence, the lowest of those L values 



www.manaraa.com

13 

 

was chosen. 2) The second of the descriptors is the ratio of the number of pixels with the 

most frequently occurring L value, given as the numberPixelsMostFrequentGray, to the 

area/size of the image.  The ratio is defined as shown in following: 

 

numberPixelsMostFrequentGray
percentMostFrequent

area
                            (6) 

 

3) The third descriptor is the average L value over the image, given as avgGray.  The 

fourth descriptor is the standard deviation L value over the image, labeled as stdGray. 

Several studies have cited descriptors from the LUV color space for content-based image 

retrieval. 

 3.3.2 Luminance Histogram. Several color/luminance count indices are 

computed over the luminance histogram. 1) The first index is computed as the square root 

of the number of luminance histogram bins with counts greater than or equal the area of 

the image times 0.001 (0.001 is chosen to discount histogram bins with very small 

counts), denoted as colorCount. 2) The second index is computed as the square root of 

the number of luminance histogram bins with counts greater than 0, denoted as 

colorCount1. 3) The third index is computed as the square root of the number of 

luminance histogram bins with counts greater than or equal to the area of the image times 

0.01, denoted as colorCount2.  colorCount, colorCount1, and colorCount2 provide three 

grayscale counting metrics for quantifying grayscale variation within the images in 

different categories.   

 3.3.3 HSV Color Space. Mostly used method of generating a color histogram is 

by counting the number of pixels having the same color or generating three separate 



www.manaraa.com

14 

 

histograms for RGB colors and then combining them. This research examines a one-

dimensional HSV histogram [9].  Each pixel in the image contributes weighted values of 

its hue „H‟ and intensity „V‟ based on its saturation „S‟ to the histogram. Thus, the 

histogram consists of two components, the „color components‟ which store the 

contribution of hue from each pixel and the „gray component‟ which store the 

contribution from intensity value at each pixel. The histogram retains the smoothness 

between the adjacent components and this allows us to perform a window based 

smoothing of the histogram.  

3.3.3.1 Histogram generation and window based smoothing. “Saturation 

projection” is used to determine the weights by which each pixel contributes its hue to the 

color component of the histogram and its intensity to the gray component of the 

histogram. Thus, it is clear that every pixel contributes to the two components of the 

histogram. The weight is dependent on saturation level. The weight of hue component,

( )hw s  and the weight of intensity of component ( )iw s  are computed using the following 

equations [9]: 

 

( ) r

hw s s  where [0,1]r                                         (7) 

( ) 1 ( )i hw s w s                                                        (8) 

The number of bins in histogram are now determined. As the histogram consists 

of two components viz. the color component and the gray component, the total number of 

bins by adding the total number of bins required for the color component and the total 

number of bins required for the gray component. Let hN be the number of bins for color 



www.manaraa.com

15 

 

component, 
gN be the number of bins for gray component and N be the total number of 

bins in the histogram [9].  

(2 _ ) 1hN Round MULT FCTR                                         (9) 

max( / _ ) 1gN Round I DIV FCTR                                        (10) 

      N = 
h gN N                                                                           (11) 

_MULT FCTR : is the multiplying factor that determines the quantization level for the 

hues. maxI : is the maximum intensity generally 255. _DIV FCTR : is the division factor 

that determines the number of quantized gray levels. 

The algorithm for generating the HSV histogram can be written as follows [9]: 

 

For each pixel in image: 

Convert RGB values to HSV 

Update histogram as follows: 

[ ( . _ )] [ ( . _ )] ( )hHist Round H MULT FCTR Hist Round H MULT FCTR w s   

[ (2 _ ) ( / _ )]

[ (2 _ ) ( / _ )] ( )i

Hist Round MULT FCTR ROUND V DIV FCTR

Hist Round MULT FCTR ROUND V DIV FCTR w s







  
 

 

All the traditional histograms do not provide perceptual gradation of colors, thus 

operations like smoothing is not provided, but the HSV histogram retains this property, 

and hence window based smoothing can be performed using the following equation [9]: 

 

( ) ( ) ( )
j N

w

i j N

Hist j w i j Hist i


 

                                          (12) 



www.manaraa.com

16 

 

where: [0, 1]h gj N N    and 

| |( ) 2 i jw i j     

 

3.3.3.2 Features. Following features were computed based on the HSV 

histogram, 1) the bin number of the histogram which has the maximum count 

(mostFrequentComponent), 2) the average value of the color and gray component in an 

image (avgVal), 3) the standard deviation of color and gray components in the image 

HSV histogram (stdVal). The first set of feature values were calculated with using the 

HSV histogram without smoothing, and the second set of feature values were calculated 

after smoothing the HSV histogram.  Both the set of features were used in classification 

of images.  

 

3.4 WDD FEATURES 

 

 The features investigated included the basis function features computed based on 

correlating the luminance histogram, smoothened and unsmooth HSV histogram with a 

set of six weight density distribution (WDD) functions [10], i.e. basis functions.    The 

WDD functions are shown in Figure 3.1 below. 

Twelve WDD-based features are computed.  Each of the WDD functions is 

decomposed into 256 discrete points for point-to-point correlation with the luminance 

histograms of the images.   

 

 

 



www.manaraa.com

17 

 

                 
                 (a)                                            (b)                                           (c) 

                 
                 (d)                                           (e)                                            (f) 

Figure 3.1.  WDD functions [10] used for computing basis function features 

 

 

 

Let W1 denote the WDD function in Figure 3.1 (a), W2 denote the WDD function 

in Figure 3.1 (b) and so on.  For an image, six WDD features (fΓ1, . . ., fΓ,6) are computed 

using the luminance histogram Γ according to the expression, 

 

255

Γ,k k

i=0

f = Γ(i)W (i)  for k = 1, 2, …, 6.                                   (13) 

 

The WDD functions were adjusted to have 256 points that were point-to-point 

correlated and multiplied with the WDD functions, with the feature values as the sums of 

the point-to-point multiplications. Six additional features (fΓ,7, . . ., fΓ,12)  are computed by 

correlating the six WDD functions with the sequence of absolute differences between the 

histogram frequencies for consecutive luminance values as  

 



www.manaraa.com

18 

 

255

0

1,k k

i

f ( i ) ( i ) W ( i )  


    for k = 7, 8, …, 12, where Γ(-1) = 0.                     (14) 

 

The WDD features provide different ways of quantifying the variation, symmetry 

and distribution of gray values within the images. 

 

3.5 TEXTURE FEATURES 

 

 These features are texture measures based on the Generalized Gray Level Spatial 

Dependence Models for Texture using the implementation given in [11].  The following 

features were computed with the luminance image for finding the gray level co-

occurrence matrix with a radius of 1.  This means that gray level co-occurrence was 

found for each pixel (i,j) over the 3x3 neighborhood of (i,j).   Let Q represent the gray 

level co-occurrence, K represent the maximum intensity in the image with k = 1, …, K, 

and S provide the neighborhood count (maximum of 9=3x3) with s = 1, …, S.  The 

features calculated from the luminance image include:   

 

2
k s

Q(k,s)

s
T1=

D


                                                                     (15) 

2

k s

s Q(k,s)

T2=
D


                                                                  (16) 

2

s k

Q(k,s)

T3=
D

 
 
 

 
                                                                (17) 



www.manaraa.com

19 

 

2

k s

Q(k,s)

T4=
D


                                                                   (18) 

10

k s

- Q(k,s)log (Q(k,x)/D)

T5=
D


                                           (19) 

r c

k s

r c

(k-m )(s-m )(Q(k,s)/D)

T6=
o o


                                         (20) 

2

k s

T7= (k-s) (Q(k,s)/D)                                                      (21) 

2

k s

T8= (Q(k,s)/D)                                                              (22) 

 
k s

Q(k,s)
D

T9=
1+ k-s

                                                               (23) 

 

For the expressions above
k s

D= Q(k,s) ;  mr, and mc are the row and column 

means for Q, respectively; or and oc are the row and column standard deviations for Q, 

respectively.   The features above include entropy, contrast, homogeneity, correlation, 

energy uniformity, and inverse difference moments.  The goal with these features is to 

provide rotation and size invariant global texture measures using the entire image as the 

region of interest for these feature calculations. 

 

3.6 CLASSIFICATION ALGORITHMS 

 

In order to evaluate the discrimination capability of the different features groups, 

radial clustering, and a modification for a gradient density function clustering-based [12] 



www.manaraa.com

20 

 

classification techniques were examined.  For both approaches, the each category of the 

image set was partitioned using 90% of the images within the category for the training set 

and the remaining 10% of the images within the category for the test set. Feature 

normalization was performed using a fuzzy set approach.  Using the training set for each 

feature, the minimum and maximum feature values, denoted as m and x, respectively are 

determined.  Let A denote the fuzzy set for a particular feature.  The membership 

function for A is labeled as μA(p) for feature value p and is defined as follows: 

A

1 if p > 0.95 x

(p) (p m) (x - m)

0 if p < m




  



                                                  (24) 

 

  μA is found for all features for each category from the training set of images.  All 

feature values for each training and test set image are normalized using μA found for the 

respective features.  The normalized training feature vectors are used to find cluster 

centers for the radial clustering and gradient density function clustering-based methods.      

The radial clustering method determines cluster centers from the training data for 

each modality category by specifying an intra-cluster distance, i.e. radius for the cluster, 

δ.  For each category, cluster centers are determined from the training data using the 

following steps.  First, select an initial cluster center as the first normalized training 

feature vector for a specified category.  Second, for the next normalized training feature 

vector, compute the Euclidean distance to the initial cluster center.  If the distance is 

greater than δ, create a new cluster and initialize its cluster center as the current 

normalized feature vector.  Otherwise, select the cluster for membership for which the 

feature vector has a minimum Euclidean distance.  The cluster center for the selected 



www.manaraa.com

21 

 

cluster is updated as the mean feature vector of all feature vectors belonging to the 

cluster.  Third, repeat step 2 for all training feature vectors for the specified category.  

Fourth, repeat steps 2 and 3 until the cluster centers do not change for an iteration 

through the training data or a specified number of iterations through the training data, 

whichever requires fewer iterations through the training data.   

The gradient density function clustering-based technique (also referred to as mean 

shift clustering method) is implemented based on the algorithm presented in [12] with 

revision given in [13]. This technique automatically determines the number of cluster 

centers from the training set and is applied to test set for classification into the different 

categories.  This technique has been shown to provide improvements in classification 

capability over other clustering methods such as K-means [14].  As part of this technique, 

there is a bandwidth parameter (α) which is used for data partitioning for cluster and 

number of cluster determination. 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

22 

 

4.  IMPLEMENTATION DETAILS 

 

 Initially, all the features and classification algorithms were developed in Matlab. 

Then the features which gave good classification rates were converted Java and a library 

of features was created which could be used by the open source data mining tool 

RapidMiner. This section explains in detail the code conversion process from Matlab to 

Java and then the process of building of plug-ins which could be used by RapidMiner. 

The challenges faced during code conversion and some of the design issues are also 

pointed out in this section. The development environment consisted of following software 

tools and languages: 

1. Eclipse IDE  for Java  

2. Java Development Kit (JDK) 5 

3. Java Runtime Environment  (JRE) 1.5 

4. Java Advanced Imaging (JAI) 1.1 

5. Apache Ant 

6. RapidMiner 4.2 

Most of the features were developed by using the various histograms of the image. The 

next section explains the Histogram class in detail. 

 

4.1 HISTOGRAM CLASS 

 In this research, five different types of histograms have been used for feature 

calculations. The different types of histograms are as follows: 

1. Luminance histogram  



www.manaraa.com

23 

 

2. Histogram of L space from LUV color image 

3. Color histogram 

4. Smooth HSV histogram 

5. Unsmooth HSV histogram 

In order to use the external libraries such as JAI, they are added to the classpath of 

program or project in which they are going to use the external libraries.  JAI contains a 

class Histogram, objects of this class can be used to generate various types of histograms 

like the luminance histogram and color histogram. But in order to have more control on 

the way image histogram is generated a class Histogram was written externally which 

had methods to generate different types of histograms. The class diagram for the class 

Histogram is shown below in Figure 4.1: 

 

 

 

 Figure 4.1. Class diagram for Histogram class 

 

  

Histogram 

 
Histogram() 

Histogram(PlanarImage pi) 

generateLumHistogram() 

generateLUVHistogram() 

generateColorHistogram() 

generateUnSmoothHSVHistogram() 

generateSmoothHSVHistogram() 

Class Name 

Constructors 

methods 



www.manaraa.com

24 

 

 Histogram class has two constructors and five methods. The first constructor 

Hsitogram() is the default constructor and is a no parameter constructor. The second 

constructor Histogram(PlanarImage pi)  is the second constructor for the class and this 

constructor takes object of type PlanarImage which is a class in JAI library. PlanarImage 

holds the image data. Pixel values of an image can be read from PlanarImage objects. 

This class also contains more information about the image like the height, width and the 

number of planes of the image. The constructor uses the PlanarImage object to initialize 

various local variables like the imgHeight, imgWidth and the numOfPlanes. The 

constructor also initializes the various histograms of the image. The class then has five 

methods to generate five different types of histograms. The signatures of each of the 

methods and method are described below.  

 The first method is for generating the luminance histogram. The signature of the 

method is as shown in equation 1: 

    

public double[] generateLumHistogram()                               (1) 

 

This class is of the public type. Objects of the class can directly access the method. The 

return type of the method is array of double. The array contains the luminance histogram 

of the image. In order to generate the histogram the luminance value at each pixel is 

calculated using equation 2 and then using the luminance value the particular bin is 

updated based on rounding the luminance value computed from the red, green and blue 

value at each pixel.  

 



www.manaraa.com

25 

 

  lum = 0.299 red + 0.587 green + 0.118  blue                               (2) 

 

The luminance of the gray scale image is the same as the pixel value at that particular 

equation.  

 The second method in the class is for generating the histogram for L space in 

LUV color image.  Signature of the method is shown in equation 3. 

 

public double[] generateLUVHistogram()                                  (3) 

 

Access type is public and hence the method can be accessed directly by the object 

of the class. The return type of the method is an array of double. The array contains the L 

space histogram. In order to generate the L space histogram the image is first converted 

to LUV space and then the histogram is generated by updating the required bins in the 

histogram. 

 The third method in the class is to generate the color histogram for an image. The 

signature of the method is shown in equation 4. 

 

public double[][][] generateColorHistogram()                           (4) 

 

The method can be accessed directly by the objects of the class because the access 

type is public. This method has a return type as 3 dimensional array double data type 

„double‟. This array holds the count of red green blue pixels. For black and white image 



www.manaraa.com

26 

 

the pixel values for all the three colors are same and hence the count of each color in each 

bin will be the same.  

 The fourth and the fifth method of the class are used for generating the unsmooth 

and smooth versions of HSV histogram. The two versions of HSV histograms are 

explained in Section 3.3.3. Equations 5 and 6 give the signatures of the respective 

methods. 

public double[] generateUnSmoothHSVHistogram()                                (5) 

public double[] generateSmoothHSVHistogram()                                     (6)  

 

The access type for both the methods is public and hence they can be accessed directly by 

the object of the class. Also the return type of the method is an array of double which 

holds the respective histograms for the image.  

 Histogram class is used in calculating many features of an image. The histogram 

class along with different features was then packed into a jar file. Following three jar files 

were formed: 

1. image_features.jar: this file contains classes for calculating various image 

features.  

2. groupfeatures.jar: this file contains classes for generating various groups of 

features. The different groups of features are explained in Section 5.1 and 5.3. 

3. classification.jar: this jar file contains classes which perform classification of 

images.  

jar file were generated using apache ant compile which is embedded in eclipse. The 

procedure for generating jar files is explained in detail in Section 4.3. These jar files were 



www.manaraa.com

27 

 

then used to create operators for RapidMiner. The procedure for creating operators for 

RapidMiner and how to install and use these operators has been in explained in detail in 

next sections. 

 

4.2 EXTENDING RAPIDMINER 

 

 In order to use RapidMiner for feature calculations, plug-ins which are compatible 

with RapidMiner are created. Plug-ins compatible with RapidMiner contains operators 

which actually work on the data to be mined. In order to write operators, „rapidminer.jar‟ 

needs to be added to the classpath of the project. After adding the jar file to the classpath, 

operator class to be extended is chosen [15]. Also, in order to use the feature libraries that 

have been created are added on the classpath for the project. 

  There are four different types of operator class described as below: 

 com.rapidminer.operator.Operator: this class just performs actions on the inputs 

and gives the output. 

 com.rapidminer.operator.OperatorChain: this class has the capability of handling 

the operator inside it.  

 com.rapidminer.operator.learner.Learner: this is an interface that is implemented 

while the operator will be in learning scheme.  

 com.rapidminer.learner.AbstractLearner: this is a class which has the similar 

functionality as that of Learner interface.  

In order to create custom operators, com.rapidminer.operator.Operator class has 

been extended. As it is an abstract class, all the unimplemented methods of the class are 

implemented in the child class. The following section explains all the methods in details. 



www.manaraa.com

28 

 

The operator which calculates the mostFrequentGray as explained in Section 3.3.1 is used 

as an example to explain the operator class. The name of the operator class is 

LMostFrequentOperator. 

4.2.1. Operator Class Details. Operator class being an abstract class, the 

methods needs to be implemented. The following methods were overridden by the child 

class.  

1) One argument constructor. This constructor takes the in object of class 

OperatorDescription. It then calls the constructor of the super class using the 

argument. The body of the constructor is shown below in Figure 4.2: 

 

 

 

Figure 4.2. Body of the constructor for the class 

 

 

 

2) Class[] getInputClassses(): This class specifies the number and classes which 

will be used as the input classes by the operator. The classes can be only of 

com.rapidminer.operator.IOObject type. The operator does not have any input 

classes of the type IOObject and hence this method will return null value as 

shown in Figure 4.3: 

public LMostFrequentOperator(OperatorDescription description) { 

  super(description); 

  // TODO Auto-generated constructor stub 

 } 



www.manaraa.com

29 

 

Figure 4.3. Body of getInputClasses 

 

 

 

3) Class[] getOutputClasses(): This class specifies the number and classes which 

are returned as output of the operator. The output class or classes have to be of 

the type com.rapidminer.operator.IOObject. In the example discussed the class 

of the type IOObject has been created and the name of the class is 

LMostFrequentResult and is described in detail in Section 4.2.2. The body of the 

method is shown in Figure 4.4: 

 

 

 

Figure 4.4. Body of the method getOutputClasses 

 

 

 

4) List<ParameterType> getParameterType(): This method specifies the name and 

the type of the parameters that may be queried by the operator.  Parameter values 

public Class[] getOutputClasses() { 

  // TODO Auto-generated method stub 

  return new Class[]{LMostFrequentResult.class}; 

 } 

public Class[] getInputClasses() { 

  // TODO Auto-generated method stub 

  return null; 

 } 



www.manaraa.com

30 

 

are generally passed by the user as input to the operator. In this particular 

operator image file name is used as the parameter to the operator. The body of 

the method is shown in Figure 4.5: 

 

 

Figure 4.5. Body of the method getParameterTypes 

 

 

5) IOObject[] apply(): this is the main method of the operator. This is the method 

where the main processing takes place. In case of LMostFrequentOperator the 

operator first creates an object of class “LMostFrequentGray” and then uses the 

object to get the mostFrquentGray feature of the image. Then an object of class 

LMostFrequentResult is created the mostFrequentGray value is set in the result 

object and the object is returned. All this is depicted in Figure 4.6: 

 

 

 

 

 

public java.util.List<ParameterType> getParameterTypes() 

 { 

  java.util.List<ParameterType> types = 

super.getParameterTypes(); 

  types.add(new 

ParameterTypeFile(Image_File_Name,"image_file_name","jpg",false)

); 

  return types; 

 } 



www.manaraa.com

31 

 

Figure 4.6. Body of apply() method 

 

 

4.2.2. ResultObject Class Details. The return object of the operator is object of 

type IOObject. In order for the result object to be of IOObject type the 

ResultObjectAdapter class is extended. This section explains in detail the 

LMostFrequentResult which is used as an output object by the operator described in the 

previous section. For each operator that has been developed the corresponding results 

objects have also been developed. In order for the result object to be of the type 

IOObject the ResultObjectAdapter class has been extended and the necessary methods 

have been implemented alongwith some additional methods. The methods and 

constructors of the LMostFrequentResult are described as follows: 

1. The class has two constructors. One is default and no parameter constructor. 

The next constructor is a two parameter constructor and the two parameters 

are the mostFrequentVlaue and imgFileName. These parameters are used to 

assign the values to the local variables of the class. The constructor with two 

arguments is shown in Figure 4.7: 

public IOObject[] apply() throws OperatorException { 

  // TODO Auto-generated method stub 

   

  String imgFileName= 

getParameterAsString(Image_File_Name); 

  mostFrequentGray = new 

LMostFrequentGray(imgFileName); 

LMostFrequentResult result = new 

LMostFrequentResult(mostFrequentGray.calculateLMostFrequentGr

ay()); 

 

  return new IOObject[] {result}; 

 } 



www.manaraa.com

32 

 

Figure 4.7. Two parameter constructor for the class LMostFrequentResult 

 

 

 

2. double getMostFrequentLevel(): is the method which returns the value of the 

mostFrequentLevel. The body of the method is shown in Figure 4.8: 

 

 

 

Figure 4.8. Body of method getMostFrequentLevel 

 

 

 

3. String getName(): This is the first method to be overridden. This method 

returns the name of the class in form of a String object. The body of the 

method is shown in Figure 4.9: 

 

 

public double getMostFrequentLevel() 

 { 

  return this.msotFrequentLevel; 

 } 

 public LMostFrequentResult(double mostFrequent, String 

imgFileName) 

 { 

  this.msotFrequentLevel = mostFrequent; 

  this.imgFileName = imgFileName; 

 } 



www.manaraa.com

33 

 

Figure 4.9. Body of the method getName 

 

 

 

4. Component getVisualizationComponent(): This method is overridden and as 

the name of the class suggest it returns the graphical object in which the result 

will be displayed. This method is called by RapidMiner after the operator is 

finished processing and the output needs to be displayed. The method uses 

Swing objects in order to display the results. The body of the method is shown 

in Figure 4.10: 

 

 

 

Figure 4.10. Body of the method getVisualizationComponent 

 

public Component getVisualizationComponent(IOContainer arg0) { 

   

  // TODO Auto-generated method stub 

  String str = toResultString(); 

   

  JEditorPane resultText = new JEditorPane(); 

        resultText.setContentType("text/html"); 

        resultText.setText(str); 

 

 resultText.setBorder(javax.swing.BorderFactory.createEmptyBorde

r(11, 11, 11, 11)); 

        resultText.setEditable(false); 

        resultText.setBackground((new JLabel()).getBackground()); 

        return new ExtendedJScrollPane(resultText); 

  } 

public String getName() { 

  // TODO Auto-generated method stub 

  return Tools.classNameWOPackage(this.getClass()); 

 } 



www.manaraa.com

34 

 

5. String toResultString(): This method converts the result object to string object. 

In LMostFrequentResult class this method converts the mostFrequentLevel to 

string object and returns it. The body of the method is shown in Figure 4.11: 

 

 

 

Figure 4.11. Body of the method toResultString 

 

 

 

6. boolean  isSavable(): This method returns true or false depending on whether 

the result object can be saved or not. In this example result object to be saved 

can be saved, and hence, true is retturned. The body of the method is shown in 

Figure 4.12: 

 

 

 

Figure 4.12. Body of method isSavable 

public boolean isSavable() 

 { 

  return true; 

 } 

public String toResultString() { 

  // TODO Auto-generated method stub 

  String result = new 

String(Double.toString(msotFrequentLevel)); 

  return result; 

 } 



www.manaraa.com

35 

 

7. void save(): This method is overridden in case the result object has to be 

saved. Since the isSavable() method returns a true value this method is 

overridden. In this method the mostFrequentLevel and imgFileName is 

written on to a text file and save the text file with a name given specified by 

the user. The body of the method is shown in Figure 4.13: 

 

 

 

Figure 4.13. Body of the method save 

 

 

 

These are the minimum requirements to create custom operators and result objects 

for the same. This operator along with other operators is converted to a jar file which is 

used as a plug-in with RapidMiner. In order to use the operators, they first need to   be 

declared to RapidMiner. This is done by adding operators.xml file to jar file containing 

these operators. Operators.xml file contain the details about the operator. The 

operators.xml file is explained in detail in the next section.    

public void save(File file) throws IOException 

 { 

  PrintWriter out = null; 

  try 

  { 

   out = new PrintWriter(file); 

   out.print(this.imgFileName + " "); 

   out.print(toResultString()); 

  } finally { 

   if(out != null ) 

    out.close(); 

  }  

 } 



www.manaraa.com

36 

 

4.2.3. Operators.xml in Detail. In order to declare the custom operator, the 

following conditions have to be complied with:  

 name: every operator should have a meaningful and unique name.  

 classname: the fully qualified class name of the operator.  

 description: a short description of the operator and the task it performs.  

 group: the name of the group in which the operator belongs. This group name is 

used for organizing the operators in groups while displaying them in GUI. 

 icon: this is an option filed and helps in identifying the operator with ease.  

An xml file is formed with all these entries, the name of the file is operators.xml 

and  this file is then packed in side the jar file. The operator.xml file with 

LMostFrequentOperator is shown in Figure 4.14: 

 

 

Figure 4.14. operators.xml 

 

 

The name “L_Most_Freq” appears on the RapidMiner GUI. The class variable 

specifies the path to the class of the operator. The description appears in the RapidMiner 

GUI when the cursor is moved over the name of this particular operator and this operator 

<operators> 

 <operator 

  name = "L_Most_Freq" 

  class = 

"com.rapidminer.image.luv.operators.LMostFrequentOperator" 

  description = " Gets the most frequent L level" 

  group = "ImageOperators.LUV" /> 

</operators> 



www.manaraa.com

37 

 

is found under ”ImageOperators.LUV ” group. This file has to be embedded into the jar 

file in order for the plug-in to work with RapidMiner. The procedure for making any kind 

of jar file is explained in the next section.  

 

4.3. PACKAGING INTO JAR FILES FOR RAPIDMINER 

 

In order to package all the image features into one file or make a library of all 

image features and also to make a plug-in for RapidMiner, all the class files and libraries 

are to be packaged into a jar file. ‘jar’ stands for Java Archive. Apache Ant has been used 

to compile and build jar files. The apache Ant compiler comes with eclipse IDE. The 

compiler reads the build.xml file and performs the necessary actions. The build file used 

for packaging the operators for RapidMiner and making a plugin is explained in detail in 

this section. The Figure 4.15 shows the build file used for packaging the operators.  

The Ant compiler looks for build.xml file. The Ant compiler searches for the 

target specified while giving the Ant run command in build.xml. If no target is specified 

at the runtime, then the compiler look for “build” target. In the example the build target 

depends on “compile” target, and hence, the compiler shifts the execution to the compile 

target. The compile target depends on copy-resources which in turn depend on the init 

target and hence the compiler first executes the init target. 

  In the init, target two folders have been created, one is build and the second one 

is final folder. After making the two folders the execution shifts to copy-resources. In this 

target all the resources i.e. Java files and operators.xml file are copied to the build folder. 

Then the compiler executes the compile target in which first the classpath is set and all 

the external libraries required for compiling the source code are added to the classpath. 



www.manaraa.com

38 

 

After setting the classpath, the compiler compiles all the Java files and the finally the 

execution returns to the build target where the all the class files, the source code, 

operators.xml and all external libraries are packaged into a jar called Rapidminer-

image.jar. 

The contents of the jar file can be found either by using the unjar command or 

simply by using and unzipping software. Files can also be added externally if need 

occurs. In order to use the plug-in, the jar file needs to be pasted it into the plugins folder 

in RapidMiner home directory and then start RapidMiner. The operators packaged into 

the jar file will appear in the GUI. The next section explains how to use the operators in 

RapidMiner. 

 

4.4 USING OPERATORS IN RAPIDMINER 

 

 This section explains how to use the RapidMiner plugin for calculating groups of 

features. The different groups of features are explained in detail in next chapter. In order 

to use the plug-in, the RapidMiner-GroupFeatures.jar needs to be pasted in the plug-ins 

folder of RapidMiner home directory. After copying the „RapidMiner-GroupFeatures.jar‟ 

file into the „plugins‟ folder of RapidMiner, RapidMiner is started and the home screen 

looks as shown in Figure 4.16: 

 

 



www.manaraa.com

39 

 

Figure 4.15. build.xml file 

 

    

 

 

<project> 

 <description> 

     Build file for the image operators RapidMiner plugin 

   </description> 

 <property name="src"           location="src"/> 

 <property name="build"   location="build"/> 

 <property name="final"         location="final"/> 

 <path id="classpath"> 

     <pathelement location="${java.home}/jre/lib/rt.jar"/> 

     <pathelement location="${java.home}/../jre/lib/rt.jar"/> 

     <pathelement location="${java.home}/lib/tools.jar"/> 

     <pathelement location="${java.home}/../lib/tools.jar"/> 

     <pathelement location="${java.home}/classes"/>  

  <pathelement location="lib/image_features.jar"/> 

  <pathelement location="lib/rapidminer.jar"/> 

   </path> 

  <target name="build" depends="compile"> 

 <unjar src="${build}/lib/image_features.jar" 

dest="${build}/image_features"/> 

   <jar jarfile="${final}/Rapidminer-image.jar" basedir="${build}"> 

    <fileset dir="${build}/image_features" includes="**/*" 

excludes="META-INF/*"/> 

    </jar> 

 </target> 

  <target name="init"> 

   <echo message="init"/> 

     <mkdir dir="${build}"/> 

   <mkdir dir ="${final}"/> 

   </target> 

  

   <target name="compile" depends="copy-resources" 

description="Compile all java files."> 

    <echo message="using java version ${java.version}"/> 

     <javac  destdir="${build}"> 

       <classpath refid="classpath"/> 

     <src path = "src"/> 

      <include name="**/*.java"/> 

     </javac> 

   </target> 

 <target name="copy-resources" depends="init"> 

     <copy todir="${build}/src"> 

       <fileset dir="src"  includes="**/*"/> 

      </copy> 

   </target> 

</project> 

 



www.manaraa.com

40 

 

 
Figure 4.16. RapidMiner home screen 

 

 

 

   A new process is started by selecting the „new‟ icon from the home screen. The 

output of which is shown in Figure 4.17: 

 



www.manaraa.com

41 

 

 
Figure 4.17. RapidMiner screen on starting a new process 

 

 

 

To calculate the groups of features, the required operator is laoded. This is done 

by right clicking on the „Root Process‟ and then selecting new operator and navigating all 

the way down to „Group_Feature‟ and then to the required features. This is shown in 

Figure 4.18: 

 



www.manaraa.com

42 

 

 
Figure 4.18. Screen while loading an operator 

 

 

 

After selecting the required feature, it appears below the „Root Process‟. Upon 

clicking on the feature, it is observed see that the screen changes and now it shows two 



www.manaraa.com

43 

 

text areas which are used as input fields to for the group feature calculation operator. This 

is shown in Figure 4.19: 

 

 

 

 
Figure 4.19. RapidMiner screen after loading the operator 

 

Text areas 

 



www.manaraa.com

44 

 

The first input field is for a text file. The text file should contain the names of all 

the images for which feature values have to be calculated. The names of the files should 

be stored in the text file without the „.jpg‟ extension. The operator will process all the 

images mentioned in the text file and so any number of images can be processed at once. 

Also it should be noted that all these files should be stored in one directory as the second 

input for the operator is the path to the directory where all these images exist. After 

selecting the valid inputs for both, the fields can be validated by clicking on the „correct‟ 

button on the top of the screen. If there is some error, it will be pointed out in the console 

as shown in Figure 4.20. If the inputs are valid, which can be seen on the console as 

shown in Figure 4.21, the operator can be started by clicking on the triangular button as 

shown in Figure 4.21: 

 

 

 

 
Figure 4.20. Errors during the validation process 

Console 

Correct button 

Error Message in 

pink. 



www.manaraa.com

45 

 

 
Figure 4.21. Console output for a validated process 

 

 

 On starting the process, the console changes as shown in Figure 4.22 and then 

once the process has finished, the output is displayed on the output screen as shown in 

Valid Inputs 

Start button 

Console Output if the 

inputs to the process are 

valid.  



www.manaraa.com

46 

 

Figure 4.23. The output of all the groups of features consists of image file name followed 

by a default class label „0‟ which is followed by the feature values. The output can be 

saved in a text file by using the save button on the output screen.  

 

 

 
Figure 4.22. Screen when the process starts 

Changes in the 

console screen on 

starting the process.  



www.manaraa.com

47 

 

 
Figure 4.23. Screen after the process has finished 

 

 

4.5. ISSUES DURING CODING 

To fasten the process of feature development initially, features were developed in 

Matlab. The features which gave good classification rates were then converted into Java 

and finally into a plug-in which could be used by Rapidminer. In Matlab, there are many 

Output screen Save button 



www.manaraa.com

48 

 

inbuilt functions which fasten up the process of feature development while it is needed to 

code each and every method in Java. Some of the issues and the way they were handled 

are explained in following sections. 

4.5.1. Matlab Data Types Vs Java Data Types.  Most of the data types which 

are available in Matlab are also available in Java except one that is unsigned versions of 

the primitive data types. For the calculation of the luminance histogram in Matlab, the 

image pixels were handled with the uint data type while in Java it was handled with 

double data type. This led to difference in the histograms generated by Matlab and Java. 

Equation 1 is used to calculate the luminance histogram.  

 

lum = 0.299 red + 0.587 green + 0.118  blue                               (1) 

 

While generating the histogram in Java Math.round() method was used in order to get the 

same histogram as that generated by Matlab code. The modified equation is given in 

equation 2. 

 

lum = Math.round(0.299*red) + Math.round(0.587*green) +Math.round(0.118* blue)  (2)                     

 

4.5.2 Array Index.  In Matlab, array index always starts from 1 while in Java the 

array index always starts from 0. Many times array indices are used while in equations 

and at other times array indices are generated with some kind of calculations. In order to 

have consistent result while coding in Java and Matlab, the array index problem needs to 

be handled. In many cases this problem was handled mathematically by modifying the 



www.manaraa.com

49 

 

equation or at times subtracting 1 before using the variable as index of an array. But, 

these methods are not full proof and do not work perfectly. In order to solve the problem, 

all the arrays in Java were created of the required size + 1 elements and the first element 

that is with the index was initialized to null value. This approach works fine in most of 

the cases and is easier to implement and there is no overhead of maintaining the correct 

index in Java by subtracting one in the end or by taking care programmatically.  

4.5.3. Matlab Inbuilt Functions. Matlab has many inbuilt functions which 

perform operations on array and matrices. Functions like mean and std are useful while 

calculating mean or standard deviation of an array. The transpose of a matrix can also be 

calculated by using the “ „ ” operator. On the other hand, Java does not have any such 

inbuilt methods or functionalities. A program or code has to be written for each and every 

such function. Matlab supports matrix operations while in Java a matrix has to be 

declared as a 2 dimensional array and for every operation done on a matrix, a program/ 

code  has to be written for it. Use of Matlab‟s inbuilt functions make programs more 

reliable and bug free as compared to Java where errors could occur at the boundary 

values of a for loop or mishandling of 2 dimensional arrays. 

4.5.4. Design Issues. This section describes two design issues. This design of the 

Histogram class is not optimal and uses a lot of memory space which can be saved for 

other functionalities. Histogram class is used for calculation of various features. Most of 

the features just require one type of histogram to be generated at a time. The histogram 

class constructor always initializes all the three types of histogram irrespective of the type 

of histogram required for feature calculation. All the histograms are arrays of double and 

the color histogram is a 3 dimensional array. So initializing all the arrays when just one is 



www.manaraa.com

50 

 

needed, leads to lot of memory wastage and hence affecting the performance of the entire 

system.  

 As mentioned earlier, there is one result object for each operator. But, many 

operators just return one double value as output and hence one result object class which 

will contain one variable of type double can be used as result object for all the operators 

that return only one value as output.  

 

   

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

51 

 

5. EXPERIMENTS AND RESULTS 

 

 

5.1 GROUPS OF FEATURES 

 

 This section explains the various features that were combined together to form 

different groups of features for classification of images. The features have already been 

described in detail in Section 3. Group 1 consisted of following global and histogram 

based features:  

1. stdColRed, stdColGreen, stdColBlue 

2. percentG 

3. percenWhite 

4. mostFrequentGray 

5. percentMostFrequent 

6. avgGray 

7. stdGray 

8. sqrtArea 

9. percentMiddle 

10. sumDiff 

11. percentDark 

12. colorCount, colorCount1, colorCount2 

13. fractDim1 and fractDim2. 

Group 2 consisted of 12 WDD features over the luminance histogram as explained in 

Section 3.4. Group 3 consisted of 9 texture features as explained in Section 3.5. 

 



www.manaraa.com

52 

 

5.2. EXPERIMENTS PERFORMED 

 

 Three feature files were generated for each of the feature groups. 90% of the 

images were used to train the radial basis classification algorithm and 10% of the images 

were used as test images. Experiments were performed on 25 random test and train sets.   

Table 5.1 presents the test results using the radial clustering method for δ = 0.5 for 

feature groups 1-3.  The test results for each of the 25 randomly generated training/test 

sets are given with the mean and standard deviation for the respective feature groups. 

Table 5.2 provides the average number of cluster centers determined from the training 

data for δ = 0.5 for each category over the 25 randomly generated training/test sets.  

These are the cluster centers used for classifying the image feature vectors into the 

different categories.  Table 5.3 presents the average and standard deviation test results 

over the 25 randomly generated training/test sets based on the features computed for 

Groups 1-3 using the radial clustering method with δ = 0, 0.5, 1.0, 5.0, 10.0, and 30.0.  

 

 

 

Table 5.1.  Test results using radial clustering method for δ = 0.5 for feature groups 1-3 

for 25 training/test sets are presented with mean and standard deviation 

Training/Test 

Set 

% Correct Test 

Image Results 

for All 

Categories – 

Group 1 

Features 

% Correct Test 

Image Results 

for All 

Categories – 

Group 2 

Features 

% Correct Test 

Image Results 

for All 

Categories – 

Group 3 

Features 

1 88.00 96.00 96.00 

2 88.00 97.33 96.00 

3 89.33 96.00 92.00 

4 88.00 96.00 98.67 

5 82.67 90.67 90.67 

6 86.67 94.67 96.00 



www.manaraa.com

53 

 

Table 5.1.  Test results using radial clustering method for δ = 0.5 for feature groups 1-3 

for 25 training/test sets are presented with mean and standard deviation (cont.) 

7 88.00 97.33 97.33 

8 80.00 92.00 92.00 

9 92.00 96.00 96.00 

10 82.67 93.33 94.67 

11 85.33 98.67 96.00 

12 86.67 96.00 92.00 

13 92.00 96.00 93.33 

14 80.00 96.00 92.00 

15 84.00 93.33 93.33 

16 80.00 94.67 93.33 

17 86.67 96.00 97.33 

18 85.33 97.33 93.33 

19 81.33 94.67 89.33 

20 80.00 94.67 92.00 

21 93.33 94.67 94.67 

22 89.33 97.33 96.00 

23 88.00 96.00 94.67 

24 93.33 98.67 97.33 

25 80.00 96.00 92.00 

    

Average  86.03 95.57 94.24 

Standard 

Deviation  4.34 1.87 2.40 

 

 

 

Table 5.2.  Average number of cluster centers generated from radial clustering method 

for δ = 0.5 over 25 randomly generated training/test sets 

Category Average Number 

Clusters – Group 1 

Average Number 

Clusters – Group 2 

Average Number 

Clusters – Group 3 

Chart / Graph 38.84 17.96 9.32 

Drawing 39.88 23.80 15.48 

Flowchart 4.56 6.00 4.68 

Form 10.00 8.24 4.68 

Histology 79.76 37.64 10.72 

Photograph 146.76 28.72 17.08 

Radiology 55.52 25.40 15.12 

Table 12.00 12.48 6.60 

Mixed 7.00 6.48 6.36 

 



www.manaraa.com

54 

 

Table 5.3. Summary average and standard deviation test results over 25 training/test sets 

using radial clustering method for δ = 0, 0.5, 1.0, 5.0, 10.0, and 30.0    

  Group 1 Group 2 Group 3 

Average % Correct 

Test Results    

δ = 0 86.03 95.57 94.24 

δ = 0.5 84.91 95.41 85.92 

δ = 1.0 84.32 95.31 78.83 

δ = 5.0 76.21 93.39 70.24 

δ = 10.0 72.16 91.73 68.53 

δ = 30.0 57.71 90.88 70.29 

    

Standard Deviation 

Test Results    

δ = 0 4.34 1.87 2.40 

δ = 0.5 4.21 1.93 4.90 

δ = 1.0 3.93 2.18 6.27 

δ = 5.0 5.96 3.23 4.42 

δ = 10.0 6.35 2.55 4.75 

δ = 30.0 9.16 2.82 5.79 

 

 

 

 

 After looking at the tables above several observations were made. Firstly, the 

Group 2 features computed by correlating the basis functions with the luminance 

histogram of the image provide the highest overall classification into the different 

categories. The average classification rate of Group 2 is 95.57 with a standard deviation 

of 1.87.  From Table 5.3 it is clear that for Group 2 best classification rate achieved was 

95. 57 for δ = 0 (nearest neighbor case) while it the lowest for δ = 30 with the 

classification rate = 90.88. Group 1 and group 3 features also give comparable results for 

δ = 0.5. The average classification rate for group 1 and 3 are 86.03 and 94.24, 

respectively. The Group 1 features consist of global image descriptors such as 

thresholding, color counting, statistical measures such as standard deviation and most 



www.manaraa.com

55 

 

frequently occurring gray level, and Fractal dimension.  As global measures, these 

features do not provide context to the distribution of gray level information within the 

images for the different categories.  The Group 3 features provide texture measures for 

distinguishing the different modality categories.  The Group 2 features quantify the 

luminance value distribution for the different categories based on correlating the 

luminance histograms with a set of basis functions to provide global measures for 

distinguishing the different categories.  The experimental results show that the correlation 

features provide effective similarity measures for images within each category.  

Furthermore, experimental results show that clustering of these features yield strong 

discriminators for the different categories. Tables 5.4 – 5.6 show the average correct 

results over the 25 test sets in confusion matrix form for the features for Groups 1-3, 

respectively, for  δ = 1.0. 

 

 

 

 

Table 5.4. Average confusion matrix test results for Group 1 for δ = 1.0 from radial                 

clustering method  

 

Category 1 2 3 4 5 6 7 8 9 

1 

10.44 0.48 0.04 0 0 0 0 0.04 0 

2 

0.76 5.84 0 0 0.12 0.12 0.12 0 

0.0

4 

3 

0.08 0 0.68 0.16 0 0 0 0.08 0 

4 

0 0.04 0.12 0.6 0 0 0.08 0.16 0 

5 

0 0.12 0 0 12 0.52 0.36 0 0 

6 

0 0 0 0 0.68 

21.1

2 3.2 0 0 



www.manaraa.com

56 

 

Table 5.4. Average confusion matrix test results for Group 1 for δ = 1.0 from radial                 

clustering method (cont)  

7 

0.04 0.44 0 0 0.56 2.32 7.52 0.04 0.08 

8 

0.08 0 0 0 0 0 0 4.76 0.16 

9 

0 0.04 0 0.16 0.08 0 0.4 0.04 0.28 

 

 

 

 

 

 

Table 5.5. Average confusion matrix test results for Group 2 for δ = 1.0 from radial                 

clustering method   

Category 1 2 3 4 5 6 7 8 9 

1 
10.44 0.48 0 0 0 0.08 0 0 0 

2 
0.48 6.36 0 0.04 0 0.12 0 0 0 

3 
0.16 0 0.68 0 0 0 0.16 0 0 

4 
0.04 0 0 0.68 0 0 0 0.28 0 

5 
0 0 0 0 13 0 0 0 0 

6 
0.12 0.44 0 0 0 24.4 0 0 0.04 

7 
0.04 0 0.12 0.04 0.2 0.08 10.48 0 0.04 

8 
0 0 0 0.44 0 0 0 4.56 0 

9 
0 0.04 0 0 0.08 0 0 0 0.88 

 

 

 

 



www.manaraa.com

57 

 

Table 5.6.  Average confusion matrix test results for Group 3 for δ = 1.0 from radial 

clustering method   

Category 1 2 3 4 5 6 7 8 9 

1 

8.00 2.96 0 0 0.04 0 0 0 0 

2 

2.32 4.4 0 0 0.08 0.16 0.04 0 0 

3 

0 0 1.00 0 0 0 0 0 0 

4 

0 0 0.04 0.72 0 0 0 0.24 0 

5 

0 0 0 0 12.16 0.04 0.80 0 0 

6 

0 0.24 0.08 0 0.84 20.44 3.32 0 0.08 

7 

0 0 0 0 0.60 2.56 7.72 0 0.12 

8 

0 0 0.04 0.16 0 0 0.12 4.52 0.16 

9 

0 0.24 0.2 0 0.12 0.04 0.04 0.2 0.16 

 

 

 

 

 

 For comparison purposes, modality classification was performed over the same 25 

training/test sets using the (mean shift) gradient density function clustering-based 

method.  For the experiments performed using this method, the bandwidth parameter (α) 

was varied as α = 0.25, 0.5, 1.0, 5.0.  Table 5.7 presents the average and standard 

deviation correct test results for Groups 1-3 using the gradient density function 

clustering-based method.  Inspecting Table 5.7, the highest classification results for 

Groups 2 and 3 were obtained for α = 0.25, and the highest discrimination results for 

Group 1 was found for α = 0.50.  Overall, the discrimination results obtained using the 

gradient density function clustering-based method were very similar but slightly lower 

than the radial clustering method for Groups 2 and 3.  Group 1 results were slightly 



www.manaraa.com

58 

 

higher for α = 0.5 with 86.19% compared to δ = 0 with 86.03%.  The experimental results 

show the utility of both classification techniques for the experimental categories used for 

image modality. 

 

 

 

Table 5.7.  Summary average and standard deviation test results over 25 training/test sets 

using gradient density function clustering-based method α =  0.25, 0.5, 1.0, 5.0 

 Group 1 Group 2 Group 3 

Average % 

Correct Test 

Results    

α = 0.25 86.03 95.57 94.13 

α = 0.5 86.19 95.52 91.52 

α = 1.0 81.97 93.12 55.57 

α = 5.0 46.56 90.77 71.15 

Standard 

Deviation Test 

Results    

α = 0.25 4.34 1.87 2.52 

α = 0.5 4.20 1.88 3.26 

α = 1.0 4.17 3.58 5.56 

α = 5.0 6.99 3.08 5.00 

   

 

 

 

5.3. COMBINATION OF FEATURES AND EXPERIMENTS 

 

 Different features with and without feature Groups 1-3 were combined to form 

different feature combinations, and each of these combinations was then used to classify 

the images by modality using the categories from Table 1.1. The radial clustering 

technique was used for modality-based classification using 90% of the images from each 



www.manaraa.com

59 

 

category to train the algorithm, and the remaining 10% of the images from each category 

were used as test images. Classification was performed over 10 randomly generated 

training/test sets.  The details of the different feature combinations are as follows: 

1. Combination 1: mostFrequentComponent, avgVal, stdVal and twelve WDD 

features from the HSV histogram; all these features were computed using the 

unsmooth HSV histogram. 

2. Combination 2: mostFrequentComponent, avgVal, stdVal and twelve WDD 

features from the HSV histogram; all these features were computed using the 

smooth HSV histogram. 

3. Combination 3: The twelve WDD features computed using the unsmooth HSV 

histogram. 

4. Combination 4: The twelve WDD features computed using the smooth HSV 

histogram. 

5. Combination 5: The twelve WDD features computed using the luminance 

histograms from Group 2; the texture features from Group 3. 

6. Combination 6: mostFrequentGray, avgGray, stdGray from Group 1; the WDD-

based features computed using the luminance histograms from Group 2. 

7. Combination 7: The WDD-based features computed using the luminance 

histograms from Group 2. 

8. Combination 8: mostFrequentGray, avgGray, stdGray, stdColRed, stdColGreen, 

and stdColBlue from Group 1; and the WDD-based features computed using the 

luminance histograms from Group 2; texture features from Group 3.  



www.manaraa.com

60 

 

9. Combination 9: WDD-based features computed using smooth HSV histogram; 

texture features from Group 3. 

10. Combination 10: WDD-based features computed using unsmooth HSV histogram; 

texture features from Group 3. 

11. Combination 11: WDD-based features computed using luminance histograms 

from Group 2; WDD-based features computed using smooth HSV histogram; 

texture features from Group 3. 

12. Combination 12:  WDD-based features computed using luminance histograms 

from Group 2; WDD-based features computed using unsmooth HSV histogram; 

texture features from Group 3.  

For each feature group ten test cases were evaluated. Tables 5.8-5.10 give the correct 

percentage test results for different feature combinations. The mean and standard 

deviation of the ten test cases are also calculated and presented in the tables below. 

 

 

 

Table 5.8. Percentage correct test results using radial clustering method classification for 

combinations 1-4   

Iteration Combination 1   Combination 2 Combination 3 Combination 4 

1 98.67 98.67 90.67 92.00 

2 96.00 97.33 94.67 93.33 

3 97.33 97.33 92.00 90.67 

4 100.00 100.00 100.00 97.33 

5 100.00 100.00 94.67 94.67 

6 97.33 93.33 89.33 86.67 

7 98.67 97.33 94.67 97.33 

8 97.33 96.00 93.33 96.00 

9 98.67 97.33 93.33 92.00 

10 96.00 97.33 94.67 94.67 



www.manaraa.com

61 

 

Table 5.8. Percentage correct test results using radial clustering method classification for 

combinations 1-4 (cont.)   

Average 98.00 97.46 93.73 93.46 

Standard 

Deviation 1.44 1.93 2.88 3.29 

 

 

 

 

Table 5.9. Percentage correct test results using radial clustering method classification for  

combinations 5-8 

Iteration Combination 5 Combination 6 Combination 7 Combination 8 

1 100.00 100.00 100.00 98.67 

2 97.33 96.00 97.33 98.67 

3 98.67 96.00 97.33 98.67 

4 97.33 97.33 97.33 96.00 

5 94.67 94.67 96.00 96.00 

6 98.67 97.33 94.67 93.33 

7 96.00 100.00 98.66 97.33 

8 94.67 97.33 94.67 94.67 

9 98.67 94.67 96.00 94.67 

10 94.67 94.67 94.67 94.67 

     

Average 96.93 96.80 96.67 96.26 

Standard 

Deviation 1.89 2.00 1.80 1.96 

  

 

 

 

Table 5.10. Percentage correct test results using radial clustering method classification 

for combinations 9-12 

Iteration Combination 9 Combination 

10 

Combination 

11 

Combination 

12 

1 100.00 98.67 100.00 98.67 

2 94.67 94.67 96.00 96.00 

3 96.00 96.00 96.00 94.67 

4 97.33 97.33 98.67 100 

5 96.00 97.33 96.00 97.33 



www.manaraa.com

62 

 

Table 5.10. Percentage correct test results using radial clustering method classification 

for combinations 9-12 (cont.) 

6 93.33 93.33 94.67 94.67 

7 97.33 97.33 97.33 97.33 

8 96.00 96.00 97.33 97.33 

9 96.00 97.33 97.33 96.00 

10 93.33 96.00 93.33 94.67 

     

Average 96.00 96.40 96.67 96.67 

Standard 

Deviation 1.99 1.55 1.91 1.81 

 

 

 

 

 

 From Tables 5.8-5.10, all of the feature combinations yielded correct 

classification greater than 93.46%.  The maximum accuracy achieved during 

classification is 98.00% for Combination 1. The features for Combination 1 are based on 

the HSV histogram compared to other feature combinations which may include features 

computed using based on the luminance histogram.  

  

 

 

 

 

 

 

 



www.manaraa.com

63 

 

6. EXTRACTING CHARACTERS FROM IMAGES 

 

 

 

6.1 OVERVIEW 

 Biomedical images, especially x-ray images, often have characters present on the 

images. The next task of the research was to correctly recognize the characters using 

optical character recognition (OCR) process. OCR is a mechanical or electronic process 

by which images which have characters are converted into files which are machine 

editable. For example, an image of printed document could be converted to a text using 

OCR so that the text file can be edited as per requirements. There are a variety of tools 

performing character recognition. Tesseract –OCR is an open source OCR tool developed 

by HP Labs and currently maintained by Google [16]. It has been used in this research to 

perform optical character recognition.   

 Tesseract-OCR has been written in C++, it was installed on Linux environment. 

The next sections explain the experiments performed on bio-medical images for character 

extraction.  

 

6.2 OCR FOR ALL IMAGES 

 

 Tesseract-OCR works only with uncompressed TIF images and can be used to 

recognize a wide range of characters. By default, Tesseract-OCR is trained to recognize 

English character set along with alpha numeric characters. Tesseract-OCR was used to 

recognize characters on bio-medical images which belonged to the nine modalities as 

described in Table 1.1. Images belonging to the “Photograph” modality did not have any 

characters on them, while images from the “Chart / Graph” and “Radiology” modality 



www.manaraa.com

64 

 

have characters. The images were converted to uncompressed tiff format and given as 

input to the software. Tesseract-OCR is trained to recognize English characters along 

with alphanumeric characters; many characters from the images were correctly 

recognized and saved in a text file. But, the software is not capable of identifying the 

granular noise present in Radiology and Histology images and so it falsely recognized 

many alphanumeric characters which were not at all present in the images. This is shown 

in the Figures 6.1 - 6.12 below: 

 

 

 

 

 
Figure 6.1. Image from modality “Photograph” 

 

 



www.manaraa.com

65 

 

 
Figure 6.2. Snapshot of characters extracted from the image 

 

 

 

 
Figure 6.3. Image from modality “Radiology” 

 



www.manaraa.com

66 

 

 
Figure 6.4. Snapshot of characters extracted from the image 

 

 

 

 
Figure 6.5. Image from modality “Chart/Graph” 

 



www.manaraa.com

67 

 

 
Figure 6.6. Snapshot of characters extracted from the image 

 

 

 

 
Figure 6.7. Image from modality “Chart/Graph” 

 

 



www.manaraa.com

68 

 

 
Figure 6.8. Snapshot of characters extracted from the image  

 

 

 

 
Figure 6.9. Image from modality “Photograph” 

 



www.manaraa.com

69 

 

 
Figure 6.10. Snapshot of characters extracted from the image  

 

 

 

 
Figure 6.11. Image from modality “Chart/Graph” 

 



www.manaraa.com

70 

 

 
Figure 6.12. Characters extracted from the image 

 

 

 

 

Tesseract-OCR recognizes false characters from photographs which do not 

actually contain any kind of character on them as shown in Figure 6.9 and 6.10. It also 

does not recognize characters which are not horizontally oriented. It works the best for 

images from the „forms‟ modality. Images belonging to forms modality have normal 

English characters, most of which are horizontally oriented.  The major reason for this 

false optical character recognition is that the Tesseract-OCR is trained to recognize 

English characters of standard size and shape. Accuracy of Tesseract-OCR is known to 

drop if the size of the characters fall below 10pt x 300 dpi, which is about 20 X 20 pixel 

size. Optical characters used on the images do not adhere to one size or shape. Also, the 

orientation and placement of characters is not the same for all images.  

 

6.3 OCR FOR RADIOLOGY IMAGES 

Radiology images are mostly grayscale images. These images have a black 

background and the objects of interest are in the foreground in the lighter shade. 



www.manaraa.com

71 

 

Characters contained in these images are white in color and mostly present at the edges of 

the images as shown in Figure 6.13: 

 

 

 

 

 
Figure 6.13. Radiology image 

 

 

 

Before using such images as input to Tesseract-OCR, these images were 

processed in order to convert them into binary images which would have a black 

background and white characters on them. Figure 6.14 shows the output of the process 

for the image shown 6.13: 

 



www.manaraa.com

72 

 

 
Figure 6.14. Output of the processed radiology image in Figure 6.13 

  

 

 

Steps followed to convert the radiology image into binary images with just the 

characters are described in this section using Figure 6.15 as reference image. 

First, define a reference area for the image set (640x480) for calibrating size 

parameters that are used in the algorithm.  Second, convert the input image to luminance. 

Third, perform wiener filtering of the luminance image (stored in filename_wiener.tif) 

shown in Figure 6.16: 

 



www.manaraa.com

73 

 

 
Figure 6.15. Radiology image example for finding text characters 

 

 

 

 

 

 
Figure 6.16. Wiener filtered image (step 3) 

 



www.manaraa.com

74 

 

 Fourth, Otsu threshold the wiener filtered image to find textual character-type 

objects.  This mask is intended to find bright textual character-type objects.  Accordingly, 

in order to limit the number of noise objects detected, the Otsu threshold is multiplied by 

0.75. The resulting thresholded wiener filtered image is denoted as threshImg. Fifth, 

Holes in the thresholded images obtained from the previous steps are filled.  Sixth, 

remove large non-text character objects from luminance thresholded images. The 

resulting image is denoted as updatedThreshImg. Seventh, find the tophat transform 

image (morphological open the wiener filtered image by a circular structuring element of 

the radius 10 and subtract this image from the original wiener filtered image) and denote 

it as grayImg. Eighth, use the Otsu method [11] to threshold the tophat transform image 

to get a preliminary mask containing textual character-type objects and denote it as 

maskImg. Ninth, for each object in maskImg, determine if it has any holes (EulerNumber 

< 1) and see if it intersects with an object in grayImg. If there is an intersection, remove 

the object. This removes ambiguous textual character-like objects. Tenth, dilate the mask 

obtained from the previous step and remove the small objects which might have been 

generated due to previous operations. Eleventh, moderate size objects are added to the 

mask obtained in the tenth step, objects having Euler number > 1 are considered to be of 

moderate size, the resulting mask is denoted as maskImg. Twelfth, after performing 

morphological closing on the mask using structural element of size 5, the resulting mask 

is denoted as closeImg.  Thirteenth, compare the two masks i.e. maskImg and closeImg. 

Fourteenth, the small objects are compared with the big objects present in the global 

thresholded image to verify that they belong to the bigger object or not. Fifteenth, check 

to see the proximity of the accepted objects with the objects of similar size, if they are 



www.manaraa.com

75 

 

close include the latter object with the accepted objects, the resulting mask is denoted as 

includeOneImg. Sixteenth, remove all small objects from the closed mask.  Objects of 

size < 200 pixels are considered to be small and denoted as includeCornerImg. The 

resulting mask is denoted as moreClosePruneImg. Seventeenth, if there are no big objects 

i.e objects of size > 0 in the moreClosePruneImg mask, then the figure does not contain 

any textual character, else the finalMask is obtained by combining the three masks 

obtained in the previous steps i.e. includeOneImg, moreClonePruneImg and 

includeCornerImg using Logical OR operation. Eighteenth, delete the small components 

from the finalMask. Eighteenth, if no areas are found in the previous step then check 

across all the bands of the image for objects denoted as finalMask. Nineteenth, delete all 

components if there are no large blocks of text in finalMask again denoted as finalMask.  

Twentieth, the outlines from the above mask are removed and denoted as tempFinalMask 

(stored as filename_final_noOutlines.tif) shown in Figure 6.17. 

Twenty-first, in this step, the relatively dark blocks of text are removed; this is 

done by first calculating the average gray value of the objects present in tempFinalMask 

denoted by avgGray. Then the avgObjGray value is obtained from the luminance 

thresholded image, if the avgObjGray < avgGray – 35 then the object is removed (stored 

as filename_final_noDark.tif) (denoted as finalMask) shown in Figure 6.18.  

 

 

 

 



www.manaraa.com

76 

 

 
Figure 6.17. Image with no outlines (step 20) 

 

 

 

 

 
Figure 6.18. Dark text blocks removed (step 21) 

 

 



www.manaraa.com

77 

 

Twenty-second, this is the final step of the algorithm, in which only the images 

with text blocks are created using the finalMask and grayImg (stored as 

filename_final_combined_gray.tif) (denoted as textOnlyImg) shown in Figure 6.19.  

 

 

 

 

 
Figure 6.19. Final image with only text (step 22) 

 

 

 

These binary images were then converted into uncompressed tif format and given 

as input to Tesseract-OCR to perform optical character recognition. The results obtained 

were better than the ones obtained by experiments conducted on raw images i.e. without 

converting the images into binary image. As the images were binary in nature there was 

no false recognition of alphanumeric characters. Images which did not have any text on 

them yielded no results for optical character recognition. For the images which had 



www.manaraa.com

78 

 

characters on them, the characters were identified but were not completely accurate. In 

most of the cases only some of the characters were identified correctly, rest of them either 

went unrecognized or were incorrectly recognized as shown below. Figure 6.20 is the 

binary image which was used as input image for OCR and Figure 6.21 shows the 

characters extracted from the binary image.  

 

 

 

 

 
Figure 6.20. Binary image used as input for OCR 

 



www.manaraa.com

79 

 

 
Figure 6.21. Characters extracted from Figure 6.20 

 

 
   

6.4 TESSERACT-OCR ANALYSIS 

 

Tesseract-OCR can be successfully used to perform optical character recognition 

on bio-medical images. But there is a lot of false character recognition due to Tesseract-

OCR not having been trained to recognize English characters of standard size and shape. 

Optical characters used on the images do not adhere to one size or shape. Also the 

alignment and placement of characters is not the same for all images.  

To overcome the problem of false character recognition the OCR software can be 

trained. OCR engine will have to be provided with the characters set that is used 

frequently on the bio-medical images and then run the engine in training mode. This will 

help the Tesseract-OCR to correctly identify the characters. Tesseract-OCR has been 

trained in a similar way to recognize characters of many different languages. So it can be 

concluded that after training the OCR engine with proper character set the results of 

optical character recognition can be improved.  



www.manaraa.com

80 

 

7. CONCLUSIONS AND FUTURE DIRECTIONS 

 

7.1 CONCLUSIONS 

 

 The goal of the research was to successfully classify images from biomedical 

journals into categories based on their modalities. The different modalities have been 

presented in Table 1.1. Several global and histogram based features were used to classify 

the images. Various features were combined to achieve the best rate of classification. The 

features based on WDD functions gave the best classification rate. The best rate of 

classification achieved was 98% for combination 1 as described in Section 5.3 with the 

worst case being 84.91 for group feature 1 as described in Section 5.1. Another goal of 

the project was to develop libraries which could be used with RapidMiner. Libraries 

calculating individual features for images and different groups of features have been 

successfully developed and tested.  Also libraries performing classification of images 

have been successfully implemented and tested.  

 

7.2 FUTURE DIRECTIONS 

 

 Soft decision based HSV histogram can be used to develop more features also 

different variations of the histogram could be used for generating the same features and 

then classification can be performed to check whether the classification rate improves or 

deteriorates. Also, the design of the Histogram class could be changed and instead of 

initializing all the arrays in the constructor they could have been initialized in the 

respective methods of the Histogram class; thus, making the program more memory 

efficient.  There could just be one result object for all the operators that return only one 



www.manaraa.com

81 

 

feature value. This will reduce the redundant amount of code. RapidMiner itself has a 

result object. If the results obtained after classification or after calculating features can be 

mapped to the result object of RapidMiner, then many more operations can be performed 

on the results. Currently the result object of the custom plug-ins developed as a part of 

research cannot be used by RapidMiner operators. These result objects are compatible 

with the custom plug-ins and hence work can be done to map the current result objects 

with the result object of RapidMiner.  For optical character recognition, training the 

Tesseract-OCR by using the characters used in radiology images can be explored and the 

accuracy for optical character recognition process can be improved.  

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

82 

 

BIBLIOGRAPHY 

1. Hiremath PS, Pujari J. Content based image retrieval using color texture and 

shape features,”15
th

 International Conference on Advanced Computing and 

Communications, pp. 780-784, 2007. 

 

2. Li J, Wang JZ, Widerhold G. IRM: Integrated Region Matching for Image 

Retrieval. 8
th

 ACM international conference on Multimedia, pp 147-156, October 

2000.  

 

3. Demner-Fushman, D., Antani, S., Thoma, G., “Automatically Finding Images for                  

Clinical Decision Support,” Seventh IEEE conference on Data Mining Workshops 

(ICDMW 2007) pp 139-144, 2007. 

 

4. Chen Y, Wang JZ. A region based fuzzy feature matching approach to content-

based image retrieval. IEEE Transactions on Pattern and Machine Intelligence, 

Vol. 24, No. 9, pg 1252-1257 2002.  

 

5. Soffer A. Image categorization using texture features. Fourth International 

Conference on Document Analysis and Recognition, Vol. 1, pp 233-237, 1997. 

 

6. Niblack W. The QBIC project: Querying images by content using color, texture, 

and shape. Storage and Retrieval of Image and Video Databases, Vol. 1908, 

pp173-187, 1993. 

 

7. Vadivel A, Majumdar AK, Sural S. Characteristics of weighted feature vector in 

content based image retrieval applications. IEEE Conference on Intelligent 

Sensing and Information Processing, pp.127-132, 2004.   

 

8. Bardet J-M, Lang G, Oppenheim G, Philippe A, Stoev S, Taqqu MS. Semi-

parametric estimation of the long-range dependence parameter: a survey. In 

Theory and Applications of Long-Range Dependency, Doukhan P, Oppenheim G, 

Taqqu MS, eds. pp 557-577, Birkhauser, 2003. 

 

9. Sural S, Qian G, Pramanik S. Segmentation and histogram generation using the 

HSV color space for image retrieval.  ICIP 2: II-589- II-592, 2002. 

 

10. Piper J, Granum E. On fully automatic feature measurement for banded 

chromosome classification. Cytometry 1989 May:10 (3):242-255. 

 

11. Haralick RM, Shapiro LG. Computer and Robot Vision, Vol. 1.  New York: 

Addison-Wesley Publishing Co., 1992. 

 



www.manaraa.com

83 

 

12. Fukunaga K, Hosteler LD. The estimation of the gradient of a density function, 

with applications in pattern recognition, IEEE Transactions on Information 

Theory 21(1): 32-40,1975. 

 

13. http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=101

61&objectType=file.  The algorithm from reference 10 was modified by Bryan 

Feldman (February 2006) and made available online at the given web site.  Last 

accessed August 13, 2008. 

 

14. Cheng Y. Mean shift, mode seeking, and clustering. IEEE Transactions on Pattern 

Analysis and Machine Learning 17(5):790-799, 1995. 

 

15. Extending RapidMiner, Chapter 6, rapidminer-4.0-tutorial.pdf, pp 497-521 

 

16. http://code.google.com/p/tesseract-ocr/ - Tesseract-OCR, 09/10/09 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

84 

 

VITA 

Vikas Nahar was born in Datia, India, on January 01, 1985. He received his 

Bachelor of Engineering (B.E.) from the Ramrao Adik Institute of Technology (RAIT), 

Mumbai, India in the field of Information Technology in June 2006.  

He joined the Missouri University of Science and Technology (Missouri S&T) in 

August 2007 and received his Master‟s degree in May 2010. His areas of interests include 

image processing, computer networking and computer security.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

85 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


	Content based image retrieval for bio-medical images
	Recommended Citation

	THE TITLE OF THESIS

